Journal of Organometallic Chemistry, 96 (1975) C38-C40 Q Rsevier **Sequoia S-A., gusanne -Printed in The Netherlands**

Preliminary communication

ARYL-TIN COMPOUNDS AS REAGENTS FOR THE FORMATION OF ARYL-TRANSITION METAL BONDS

COLm EABORN*. KEVIN ODELL and ALAN PIDCOCK*

School of Molecular Sciences, university of Sussex. Brighton BNI 9QJ (Great Britain) **(Received June 16th, 1975)**

Summary

In complexes of platinum and rhodium, active anionic ligands can be replaced by aryl groups by use of aryltrimethyltin reagents under mild conditions-

The complex $[PtCl₂(COD)] (COD = cycloocta-1,5-diene)$ reacts with a wide **range of aryltrimethyltin compounds in dichloromethane according to Scheme 1.**

 $[PtCl₂(COD)] + ArSnMe₃ \rightarrow [PtClAr(COD)] + SnClMe₃$ $[PtClAr(COD)] + Ar'SnMe₃ \rightarrow [PtArAr'(COD)] + SnClMe₃$

SCHEME 1

Mono-aryl complexes $(Ar = 2$ -benzo $[b]$ furyl, 2-benzo $[b]$ thienyl, 3-(1,2-dihydro**benzo)cyclobutenyl, 2-furyl, 2-thienyl, 4chlorophenyl,4-methylphenyl, 4methoxyphenyl, 4-(trimethylsilyl)phenyl) have been obtained by use of stoichiometric proportions of reactants, bis-aryl complexes (** $Ar = Ar' = 2$ **-benzo[b] furyl, 2-benzo-[blthienyl, 3-(1,2dihydrobenzo)cycIobutenyl, 2-furyl, 24hieny1, phenyl, 4bromophenyl,4-t-butylphenyl, 3-fluorophenyl, 2-, 3-, and 4-methoxyphenyl, 4methylphenyl,3-(trifluoromethyl)phenyl, 4-(trimethylsilyl)phenyl) by use of 2.5 molar proportions of tin reagents, and mixed ary1 complexes (Ar = 2-benzo-** [b] furyl, $\mathbf{Ar}' = 4$ -methylphenyl; $\mathbf{Ar} = 2$ -thienyl, $\mathbf{Ar}' = 2$ -furyl, 4-methoxyphenyl) **by use of 1.5 molar proportions of Ar'SnMes with the complexes [PtClAr(COD)] _ The complex** $[Pt\{(C_6H_4Me-4-\eta)Cr(CO)\}\frac{1}{2}$ **COD] has also been obtained from** the tricarbonylchromium derivative of 4 -MeC₆H₄SnMe₃. Yields are high ($> 80\%$). **and almost pure products are obtained directly by taking off the solvent under vacuum and washing the residue with a small quantity of ether to remove SnClMe3 and unchanged ArSnMez . Use of the aryl-tin compounds clearly has special**

^{*}Authors to whom con-espondencc should be addressed.

importance (in addition to general advantages such as cleaner reactions, higher yields, and avoidance of any hydrolysis step) when the corresponding aryl⁻Grignard or -lithium reagents are not available, as for example, for Ar = 3-(1,2-dihydrobenzo)cyclobutenyl [1] or $(C_6H_4Me-4-\eta)CrCO_3$ [2].

The reactivities of the ArSnMe₃ compounds vary widely, and the qualitative **sequence of the ease of reaction parallels that established for cleavage of the Ar-MMe, bonds (M = Si, Ge, Sn) by a range of electrophiles [3], suggesting that the reactions may be regarded as electrophilic aromatic substitutions. Reactions** of active tin compounds $(Ar = 2$ -benzo $[b]$ furyl, 2-benzo $[b]$ thienyl, 2-furyl, **2-thienyl) are complete at room temperature within a few hours. With less active tin compounds it is necessary to reflux the reaction mixtures, since reactions at room temperature take several days and may give only the mono-aryl complexes (Ar = phenyl, substituted phenyl).**

Aryl complexes with ligands L such as phosphines, arsines, 2,2'-bipyridyl and the carbene CN(Me)CH₂CH₂NMe [4] are easily obtained by displacement of COD. The ³¹P-{¹H}NMR spectra of the phosphine complexes in dichloromethane **show that the bis-aryl complexes are** *cis,* **but the mono-aryl complexes** *[PtClArL~]* are *trans* or predominantly *trans* in solution, except when $L_2 = 1.2$ -bis(diphenyl**phosphino)ethane.**

The complexes cis - $[PtCl₂L₂]$ (L = phosphine) do not react with ArSnMe₃, perhaps due to the lower *trans* effect of phosphine compared with olefin ligands [5]. The complexes cis- $[Pt(O_2CCF_3)_2L_2]$ $(L = PMe_2Ph, PEt_2Ph)$ are much more reactive, **forming trans-[Pt(O₂CCF₃)ArL₂] with ArSnMe₃ (Ar =** $XC₆H₄$ **, with X =** o **-Me, p-OMe, or m-F) at room temperature_ A small proportion of cis-[PtArzLz] is also formed, and this product is favoued in reactions carried out under reflux. The** cis-[Pt(O₂CCF₃)₂L₂] complexes will react even with alkyl-Sn bonds, as shown by the interaction of cis $[Pt(O_2 CCF_3)_2] (PMe_2Ph)_2]$ and Me_4Sn to give *trans-* $[PtMe(O_2CCF_3)(PMe_2Ph)_2]$ quantitatively after 16 h at room temperature or **after 4 h under reflux in benzene.**

In some other systems to be described later, the ArSnMe, compounds appear to transfer Me ligands even more readily than Ph ligands to Pt.

As expected, the reactivity of Group IV compounds in this type of reaction appears to decrease in the sequence $Pb > Sn > Ge > Si$. We obtained $[PEPh, (COD)]$ from [PtCl₂(COD)] and PhPbMe₃ after a few hours at room temperature, whereas ArGeMe₃ gave $[PtAr_2(COD)]$ $(Ar = 2$ -benzo $[b]$ furyl) from $[PtCl_2(COD)]$ **after 23 h at 90"; at room temperature [PtArCl(COD)] was formed in only 10%** yield after 5 days. Treatment of [PtCl₂(COD)] with ArSiMe₃ having Ar = **2methoxyphenyl for 15 h at 90" gave no indication of reaction, but with Ar =** . **2-fury1 a 15% yield of [PtClAr(COD)] was obtained after 30 h at 90".**

The labilizing effect of olefins is also indicated by reaction of cis - $[PtCl₂(C₂H₄)$ -**(PMe,Ph)] with ArSnMe, (Scheme 2, Ar = 3-t-butylphenyl, Z-benzo[b] furyl).** The complexes cis $[PtCl₂(CO)(PR₃)]$ form analogous chlorine-bridged complexes, but with ArCO ligands instead of Ar. From the ³¹P-{¹H}spectra both classes of **bridged complexes appear to be comprised of cis and** *tram* **isomers in solution,** and both undergo the usual bridge cleavage reaction with two molar equivalents **of donors such as amines or phosphines.**

Although mer-[RhCl₃(PMe₂Ph)₃] does not react with 2-MeOC₆H₄SnMe₃, the complex mer- $[RhCl_2(SO_3F)(PMe_2Ph)_3]$ [6], which has the better leaving group.

S03F *tmns to* **phosphorus, gives a product with two sets of 3'P.resonances** with parameters 1 *J*(Rh--P) = 95 Hz (doublets, $I = 2$), 1 *J*(Rh--P) = 78 Hz (triplets, $I = 1$, ²J(PRhP) = 24 Hz. The small magnitude of ¹J(Rh--P) for the unique phosphine indicates that the complex should be formulated mer- $\text{RhCl}_2(\text{C}_6\text{H}_4\text{OMe-}o)$ -**(PMe,Ph),] with the aryl group frurzs to the unique phosphine- It is noteworthy that Grignard and organolithium reagents do not give identifiable products with** Rh^{III} complexes [7].

Acknowledgement

We thank the Science Research Council for the award of a Research Studentship to K-0,

References

C40

1 C. Eabom. A.A_ Nakm and D.R.M. Walton. J. Chem_ SOC.. Perkin I. (1974) 870.

2 D. Seyfertb *and* **D.L. AlIeston. Inorg. Cbem., 2 (1963) 417.**

3 R. Taylor. in I-L Bamford and C.F.H. Tipper (Eds.), Comprehensive chemical Kinetics. Vol. 13. Elsevier. Amsterdam. 1972. ch_ I_

4 M-F_ Lappert and P-L- Pye. personal communication-

5 C_ &born. N. Farrell, J-L. b¶urphy and A. Pidcock. .I. *Organometal.* **Chem.. 55 <1973) C68.**

6 B.E. Mann, C. Masters and B.L. Sbaw. J_ Chem- Sot.. Dalton, (1972) 704-

ZJ_ Chatt and AJL **Underhill. J. Cbem_ Sot, 0963) 2088; J. Cbatt. N-P_ Johnson and B.L. Shaw. J. Chem.** Soc., (1964) 2508.

SF_ Basolo and R.G. Pearson, Mechanisms of Inorganic Reactions. 2nd ed. Wiley. New York. 1967. Ch- 5.